건강수명전략 카테고리는 건강하게 오래 사는 데 영향을 주는 핵심 요인들을 과학적으로 살펴보고, 실생활에서 적용할 수 있는 구체적인 방법들을 소개합니다. 최신 의학·생명과학 연구를 바탕으로, 올바른 생활습관, 스트레스와 감정 관리, 몸과 마음의 회복력, 유전자 발현을 조절하는 후생유전학, 그리고 만성질환을 예방하고 되돌리는 전략까지 건강수명을 늘리는 통합적 지식을 다룹니다.
Cawthon RM et al. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet, 361(9355), 393-395. [링크]
Boccardi V et al. (2018). Telomere shortening and Alzheimer’s disease: A biological marker of early cognitive decline. Ageing Research Reviews, 47, 11–20. [링크]
Mirabello L et al. (2010). The association of leukocyte telomere length with cancer risk: a meta-analysis. PLoS One, 5(11): e11352. [링크]
Rossiello F et al. (2022). Telomere damage: Origins and consequences. Current Opinion in Genetics & Development, 74, 101924. [링크]
Khan S et al. (2012). Inflammation and aging: A molecular perspective. Ageing Research Reviews, 11(1), 100–109. [링크]
Epel ES et al. (2004). Accelerated telomere shortening in response to life stress. PNAS, 101(49), 17312–17315. [링크]
Valdes AM et al. (2005). Obesity, smoking, and telomere length in women. The Lancet, 366(9486), 662–664. [링크]
Arsenis CA et al. (2017). Physical activity and telomere length: Mechanisms of protection. Mayo Clinic Proceedings, 92(10), 1583–1591. [링크]
Borghini A et al. (2015). Endurance training and telomere length: a review. European Journal of Applied Physiology, 115, 509–516. [링크]
Tucker LA. (2017). Physical activity and telomere length in US men and women. American Journal of Public Health, 107(5), 678–683. [링크]
Shammas MA. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34. [링크]
Fostitsch C et al. (2025). The association between sleep quality and telomere attrition: A systematic review and meta-analysis comprising 400,212 participants. Sleep Medicine Reviews, 80: 102073.
Mason C et al. (2013). Weight loss and telomere length in obese adults: A clinical trial. Obesity (Silver Spring), 21(8), E495–E501. [링크]
Arthur, J. R. (2001). The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 57, 1825–1835.
Chandimali, N., Bak, S. G., Park, E. H., Lim, H. J., Won, Y. S., Kim, E. K., … & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19.
Chang, H. M., Lin, H. C., Cheng, H. L., Liao, C. K., Tseng, T. J., Renn, T. Y., … & Chen, L. Y. (2021). Melatonin successfully rescues the hippocampal molecular machinery and enhances anti-oxidative activity following early-life sleep deprivation injury. Antioxidants, 10(5), 774.
Davinelli, S., Medoro, A., Savino, R., & Scapagnini, G. (2024). Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cellular and Molecular Neurobiology, 44(1), 52.
Done, A. J., & Traustadóttir, T. (2016). Nrf2 mediates redox adaptations to exercise. Redox Biology, 10, 191–199.
Doroftei, B., Ilie, O. D., Cojocariu, R. O., Ciobica, A., Maftei, R., Grab, D., … & Simionescu, G. (2020). Minireview exploring the biological cycle of vitamin B3 and its influence on oxidative stress: further molecular and clinical aspects. Molecules, 25(15), 3323.
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews.
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1), 391.
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., … & Reshi, M. S. (2022). Oxidative Stress in Human Pathology and Aging.
Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70(5), 257–265.
Hu, Z., Yue, H., Jiang, N., & Qiao, L. (2025). Diet, oxidative stress and MAFLD: a mini review. Frontiers in Nutrition, 12, 1539578.
Kado, A., Moriya, K., Inoue, Y., Yanagimoto, S., Tsutsumi, T., Koike, K., & Fujishiro, M. (2024). Decreased antioxidant-related superoxide dismutase 1 expression in peripheral immune cells indicates early ethanol exposure. Scientific Reports, 14(1), 25091.
Kong, L., Li, S., Fu, Y., Cai, Q., Du, X., Liang, J., & Ma, T. (2025). Mitophagy in relation to chronic inflammation/ROS in aging. Molecular and Cellular Biochemistry, 480(2), 721–731.
Kong, Y., Trabucco, S. E., & Zhang, H. (2014). Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdisciplinary Topics in Gerontology. https://doi.org/10.1159/000358901
Kyriazis, I. D., Vassi, E., Alvanou, M., Angelakis, C., Skaperda, Z., Tekos, F., … & Kouretas, D. (2022). The impact of diet upon mitochondrial physiology. International Journal of Molecular Medicine, 50(5), 135.
Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425.
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276.
Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., … & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499–515.
Wu, Z., Qu, J., Zhang, W., & Liu, G. H. (2024). Stress, epigenetics, and aging: unraveling the intricate crosstalk. Molecular Cell, 84(1), 34–54.
Yutani, R. (2025). Oxidative Stress in Its Pathophysiology. Can the Antioxidant Glutathione Delay or Prevent Cognitive Impairment of Alzheimer’s Disease?