Cawthon RM et al. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet, 361(9355), 393-395. [링크]
Boccardi V et al. (2018). Telomere shortening and Alzheimer’s disease: A biological marker of early cognitive decline. Ageing Research Reviews, 47, 11–20. [링크]
Mirabello L et al. (2010). The association of leukocyte telomere length with cancer risk: a meta-analysis. PLoS One, 5(11): e11352. [링크]
Rossiello F et al. (2022). Telomere damage: Origins and consequences. Current Opinion in Genetics & Development, 74, 101924. [링크]
Khan S et al. (2012). Inflammation and aging: A molecular perspective. Ageing Research Reviews, 11(1), 100–109. [링크]
Epel ES et al. (2004). Accelerated telomere shortening in response to life stress. PNAS, 101(49), 17312–17315. [링크]
Valdes AM et al. (2005). Obesity, smoking, and telomere length in women. The Lancet, 366(9486), 662–664. [링크]
Arsenis CA et al. (2017). Physical activity and telomere length: Mechanisms of protection. Mayo Clinic Proceedings, 92(10), 1583–1591. [링크]
Borghini A et al. (2015). Endurance training and telomere length: a review. European Journal of Applied Physiology, 115, 509–516. [링크]
Tucker LA. (2017). Physical activity and telomere length in US men and women. American Journal of Public Health, 107(5), 678–683. [링크]
Shammas MA. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34. [링크]
Fostitsch C et al. (2025). The association between sleep quality and telomere attrition: A systematic review and meta-analysis comprising 400,212 participants. Sleep Medicine Reviews, 80: 102073.
Mason C et al. (2013). Weight loss and telomere length in obese adults: A clinical trial. Obesity (Silver Spring), 21(8), E495–E501. [링크]
Arthur, J. R. (2001). The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 57, 1825–1835.
Chandimali, N., Bak, S. G., Park, E. H., Lim, H. J., Won, Y. S., Kim, E. K., … & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19.
Chang, H. M., Lin, H. C., Cheng, H. L., Liao, C. K., Tseng, T. J., Renn, T. Y., … & Chen, L. Y. (2021). Melatonin successfully rescues the hippocampal molecular machinery and enhances anti-oxidative activity following early-life sleep deprivation injury. Antioxidants, 10(5), 774.
Davinelli, S., Medoro, A., Savino, R., & Scapagnini, G. (2024). Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cellular and Molecular Neurobiology, 44(1), 52.
Done, A. J., & Traustadóttir, T. (2016). Nrf2 mediates redox adaptations to exercise. Redox Biology, 10, 191–199.
Doroftei, B., Ilie, O. D., Cojocariu, R. O., Ciobica, A., Maftei, R., Grab, D., … & Simionescu, G. (2020). Minireview exploring the biological cycle of vitamin B3 and its influence on oxidative stress: further molecular and clinical aspects. Molecules, 25(15), 3323.
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews.
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1), 391.
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., … & Reshi, M. S. (2022). Oxidative Stress in Human Pathology and Aging.
Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70(5), 257–265.
Hu, Z., Yue, H., Jiang, N., & Qiao, L. (2025). Diet, oxidative stress and MAFLD: a mini review. Frontiers in Nutrition, 12, 1539578.
Kado, A., Moriya, K., Inoue, Y., Yanagimoto, S., Tsutsumi, T., Koike, K., & Fujishiro, M. (2024). Decreased antioxidant-related superoxide dismutase 1 expression in peripheral immune cells indicates early ethanol exposure. Scientific Reports, 14(1), 25091.
Kong, L., Li, S., Fu, Y., Cai, Q., Du, X., Liang, J., & Ma, T. (2025). Mitophagy in relation to chronic inflammation/ROS in aging. Molecular and Cellular Biochemistry, 480(2), 721–731.
Kong, Y., Trabucco, S. E., & Zhang, H. (2014). Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdisciplinary Topics in Gerontology. https://doi.org/10.1159/000358901
Kyriazis, I. D., Vassi, E., Alvanou, M., Angelakis, C., Skaperda, Z., Tekos, F., … & Kouretas, D. (2022). The impact of diet upon mitochondrial physiology. International Journal of Molecular Medicine, 50(5), 135.
Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425.
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276.
Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., … & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499–515.
Wu, Z., Qu, J., Zhang, W., & Liu, G. H. (2024). Stress, epigenetics, and aging: unraveling the intricate crosstalk. Molecular Cell, 84(1), 34–54.
Yutani, R. (2025). Oxidative Stress in Its Pathophysiology. Can the Antioxidant Glutathione Delay or Prevent Cognitive Impairment of Alzheimer’s Disease?
Alkozei, A., Smith, R., Pisner, D. A., Vanuk, J. R., Berryhill, S. M., Fridman, A., … & Killgore, W. D. (2016). Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. Sleep, 39(9), 1671–1680.
Auger, R. R., Burgess, H. J., Dierkhising, R. A., Sharma, R. G., & Slocumb, N. L. (2011). Light exposure among adolescents with delayed sleep phase disorder: a prospective cohort study. Chronobiology International, 28(10), 911–920.
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–1073.
Cajochen, C., Frey, S., Anders, D., Späti, J., Bues, M., Pross, A., … & Stefani, O. (2011). Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology.
Chellappa, S. L., Vujovic, N., Williams, J. S., & Scheer, F. A. (2019). Impact of circadian disruption on cardiovascular function and disease. Trends in Endocrinology & Metabolism, 30(10), 767–779.
Constantino, D. B., Lederle, K. A., Middleton, B., Revell, V. L., Sletten, T. L., Williams, P., … & van der Veen, D. R. (2025). The bright and dark side of blue-enriched light on sleep and activity in older adults. GeroScience, 1–13.
Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One, 8(5), e63773.
Gooley, J. J., Rajaratnam, S. M., Brainard, G. C., Kronauer, R. E., Czeisler, C. A., & Lockley, S. W. (2010). Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Science Translational Medicine, 2(31), 31ra33.
Jud, C., Chappuis, S., Revell, V. L., Sletten, T. L., Saaltink, D. J., Cajochen, C., … & Albrecht, U. (2009). Age-dependent alterations in human PER2 levels after early morning blue light exposure. Chronobiology International, 26(7), 1462–1469.
Kessel, L., Siganos, G., Jørgensen, T., & Larsen, M. (2011). Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep, 34(9), 1215–1219.
Kim, K., Yokosawa, K., Okada, K., Onishi, H., Tan, Y., & Lee, S. I. (2025). Effects of blue light during and after exposure on auditory working memory. Journal of Physiological Anthropology, 44(1), 1–9.
Lockley, S. W., Brainard, G. C., & Czeisler, C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology & Metabolism, 88(9), 4502–4505.
Lockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., & Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29(2), 161–168.
Lunn, R. M., Blask, D. E., Coogan, A. N., Figueiro, M. G., Gorman, M. R., Hall, J. E., … & Boyd, W. A. (2017). Health consequences of electric lighting practices in the modern world. Science of the Total Environment, 607, 1073–1084.
Münch, M., Nowozin, C., Regente, J., Bes, F., De Zeeuw, J., Hädel, S., … & Kunz, D. (2017). Blue-enriched morning light as a countermeasure to light at the wrong time: effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology, 74(4), 207–218.
Najjar, R. P., Chiquet, C., Teikari, P., Cornut, P. L., Claustrat, B., Denis, P., … & Gronfier, C. (2014). Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms?. PLoS One, 9(1), e85837.
Raikes, A. C., Dailey, N. S., Forbeck, B., Alkozei, A., & Killgore, W. D. (2021). Daily morning blue light therapy for post-mTBI sleep disruption: effects on brain structure and function. Frontiers in Neurology, 12, 625431.
Riemersma-van Der Lek, R. F., Swaab, D. F., Twisk, J., Hol, E. M., Hoogendijk, W. J., & Van Someren, E. J. (2008). Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA, 299(22), 2642–2655.
Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: daily temporal patterns of human chronotypes. Journal of Biological Rhythms, 18(1), 80–90.
Schrader, L. A., Ronnekleiv-Kelly, S. M., Hogenesch, J. B., Bradfield, C. A., & Malecki, K. M. (2024). Circadian disruption, clock genes, and metabolic health. The Journal of Clinical Investigation, 134(14).
Van der Maren, S., Moderie, C., Duclos, C., Paquet, J., Daneault, V., & Dumont, M. (2018). Daily profiles of light exposure and evening use of light-emitting devices in young adults complaining of a delayed sleep schedule. Journal of Biological Rhythms, 33(2), 192–202.
West, K. E., Jablonski, M. R., Warfield, B., Cecil, K. S., James, M., Ayers, M. A., … & Brainard, G. C. (2011). Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of Applied Physiology.
Zhao, J., Warman, G. R., & Cheeseman, J. F. (2019). The functional changes of the circadian system organization in aging. Ageing Research Reviews, 52, 64–71.