건강수명전략 카테고리는 건강하게 오래 사는 데 영향을 주는 핵심 요인들을 과학적으로 살펴보고, 실생활에서 적용할 수 있는 구체적인 방법들을 소개합니다. 최신 의학·생명과학 연구를 바탕으로, 올바른 생활습관, 스트레스와 감정 관리, 몸과 마음의 회복력, 유전자 발현을 조절하는 후생유전학, 그리고 만성질환을 예방하고 되돌리는 전략까지 건강수명을 늘리는 통합적 지식을 다룹니다.
Cawthon RM et al. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet, 361(9355), 393-395. [링크]
Boccardi V et al. (2018). Telomere shortening and Alzheimer’s disease: A biological marker of early cognitive decline. Ageing Research Reviews, 47, 11–20. [링크]
Mirabello L et al. (2010). The association of leukocyte telomere length with cancer risk: a meta-analysis. PLoS One, 5(11): e11352. [링크]
Rossiello F et al. (2022). Telomere damage: Origins and consequences. Current Opinion in Genetics & Development, 74, 101924. [링크]
Khan S et al. (2012). Inflammation and aging: A molecular perspective. Ageing Research Reviews, 11(1), 100–109. [링크]
Epel ES et al. (2004). Accelerated telomere shortening in response to life stress. PNAS, 101(49), 17312–17315. [링크]
Valdes AM et al. (2005). Obesity, smoking, and telomere length in women. The Lancet, 366(9486), 662–664. [링크]
Arsenis CA et al. (2017). Physical activity and telomere length: Mechanisms of protection. Mayo Clinic Proceedings, 92(10), 1583–1591. [링크]
Borghini A et al. (2015). Endurance training and telomere length: a review. European Journal of Applied Physiology, 115, 509–516. [링크]
Tucker LA. (2017). Physical activity and telomere length in US men and women. American Journal of Public Health, 107(5), 678–683. [링크]
Shammas MA. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34. [링크]
Fostitsch C et al. (2025). The association between sleep quality and telomere attrition: A systematic review and meta-analysis comprising 400,212 participants. Sleep Medicine Reviews, 80: 102073.
Mason C et al. (2013). Weight loss and telomere length in obese adults: A clinical trial. Obesity (Silver Spring), 21(8), E495–E501. [링크]
Arthur, J. R. (2001). The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 57, 1825–1835.
Chandimali, N., Bak, S. G., Park, E. H., Lim, H. J., Won, Y. S., Kim, E. K., … & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19.
Chang, H. M., Lin, H. C., Cheng, H. L., Liao, C. K., Tseng, T. J., Renn, T. Y., … & Chen, L. Y. (2021). Melatonin successfully rescues the hippocampal molecular machinery and enhances anti-oxidative activity following early-life sleep deprivation injury. Antioxidants, 10(5), 774.
Davinelli, S., Medoro, A., Savino, R., & Scapagnini, G. (2024). Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cellular and Molecular Neurobiology, 44(1), 52.
Done, A. J., & Traustadóttir, T. (2016). Nrf2 mediates redox adaptations to exercise. Redox Biology, 10, 191–199.
Doroftei, B., Ilie, O. D., Cojocariu, R. O., Ciobica, A., Maftei, R., Grab, D., … & Simionescu, G. (2020). Minireview exploring the biological cycle of vitamin B3 and its influence on oxidative stress: further molecular and clinical aspects. Molecules, 25(15), 3323.
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews.
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1), 391.
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., … & Reshi, M. S. (2022). Oxidative Stress in Human Pathology and Aging.
Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70(5), 257–265.
Hu, Z., Yue, H., Jiang, N., & Qiao, L. (2025). Diet, oxidative stress and MAFLD: a mini review. Frontiers in Nutrition, 12, 1539578.
Kado, A., Moriya, K., Inoue, Y., Yanagimoto, S., Tsutsumi, T., Koike, K., & Fujishiro, M. (2024). Decreased antioxidant-related superoxide dismutase 1 expression in peripheral immune cells indicates early ethanol exposure. Scientific Reports, 14(1), 25091.
Kong, L., Li, S., Fu, Y., Cai, Q., Du, X., Liang, J., & Ma, T. (2025). Mitophagy in relation to chronic inflammation/ROS in aging. Molecular and Cellular Biochemistry, 480(2), 721–731.
Kong, Y., Trabucco, S. E., & Zhang, H. (2014). Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdisciplinary Topics in Gerontology. https://doi.org/10.1159/000358901
Kyriazis, I. D., Vassi, E., Alvanou, M., Angelakis, C., Skaperda, Z., Tekos, F., … & Kouretas, D. (2022). The impact of diet upon mitochondrial physiology. International Journal of Molecular Medicine, 50(5), 135.
Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425.
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276.
Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., … & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499–515.
Wu, Z., Qu, J., Zhang, W., & Liu, G. H. (2024). Stress, epigenetics, and aging: unraveling the intricate crosstalk. Molecular Cell, 84(1), 34–54.
Yutani, R. (2025). Oxidative Stress in Its Pathophysiology. Can the Antioxidant Glutathione Delay or Prevent Cognitive Impairment of Alzheimer’s Disease?
Alkozei, A., Smith, R., Pisner, D. A., Vanuk, J. R., Berryhill, S. M., Fridman, A., … & Killgore, W. D. (2016). Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. Sleep, 39(9), 1671–1680.
Auger, R. R., Burgess, H. J., Dierkhising, R. A., Sharma, R. G., & Slocumb, N. L. (2011). Light exposure among adolescents with delayed sleep phase disorder: a prospective cohort study. Chronobiology International, 28(10), 911–920.
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–1073.
Cajochen, C., Frey, S., Anders, D., Späti, J., Bues, M., Pross, A., … & Stefani, O. (2011). Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology.
Chellappa, S. L., Vujovic, N., Williams, J. S., & Scheer, F. A. (2019). Impact of circadian disruption on cardiovascular function and disease. Trends in Endocrinology & Metabolism, 30(10), 767–779.
Constantino, D. B., Lederle, K. A., Middleton, B., Revell, V. L., Sletten, T. L., Williams, P., … & van der Veen, D. R. (2025). The bright and dark side of blue-enriched light on sleep and activity in older adults. GeroScience, 1–13.
Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One, 8(5), e63773.
Gooley, J. J., Rajaratnam, S. M., Brainard, G. C., Kronauer, R. E., Czeisler, C. A., & Lockley, S. W. (2010). Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Science Translational Medicine, 2(31), 31ra33.
Jud, C., Chappuis, S., Revell, V. L., Sletten, T. L., Saaltink, D. J., Cajochen, C., … & Albrecht, U. (2009). Age-dependent alterations in human PER2 levels after early morning blue light exposure. Chronobiology International, 26(7), 1462–1469.
Kessel, L., Siganos, G., Jørgensen, T., & Larsen, M. (2011). Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep, 34(9), 1215–1219.
Kim, K., Yokosawa, K., Okada, K., Onishi, H., Tan, Y., & Lee, S. I. (2025). Effects of blue light during and after exposure on auditory working memory. Journal of Physiological Anthropology, 44(1), 1–9.
Lockley, S. W., Brainard, G. C., & Czeisler, C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology & Metabolism, 88(9), 4502–4505.
Lockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., & Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29(2), 161–168.
Lunn, R. M., Blask, D. E., Coogan, A. N., Figueiro, M. G., Gorman, M. R., Hall, J. E., … & Boyd, W. A. (2017). Health consequences of electric lighting practices in the modern world. Science of the Total Environment, 607, 1073–1084.
Münch, M., Nowozin, C., Regente, J., Bes, F., De Zeeuw, J., Hädel, S., … & Kunz, D. (2017). Blue-enriched morning light as a countermeasure to light at the wrong time: effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology, 74(4), 207–218.
Najjar, R. P., Chiquet, C., Teikari, P., Cornut, P. L., Claustrat, B., Denis, P., … & Gronfier, C. (2014). Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms?. PLoS One, 9(1), e85837.
Raikes, A. C., Dailey, N. S., Forbeck, B., Alkozei, A., & Killgore, W. D. (2021). Daily morning blue light therapy for post-mTBI sleep disruption: effects on brain structure and function. Frontiers in Neurology, 12, 625431.
Riemersma-van Der Lek, R. F., Swaab, D. F., Twisk, J., Hol, E. M., Hoogendijk, W. J., & Van Someren, E. J. (2008). Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA, 299(22), 2642–2655.
Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: daily temporal patterns of human chronotypes. Journal of Biological Rhythms, 18(1), 80–90.
Schrader, L. A., Ronnekleiv-Kelly, S. M., Hogenesch, J. B., Bradfield, C. A., & Malecki, K. M. (2024). Circadian disruption, clock genes, and metabolic health. The Journal of Clinical Investigation, 134(14).
Van der Maren, S., Moderie, C., Duclos, C., Paquet, J., Daneault, V., & Dumont, M. (2018). Daily profiles of light exposure and evening use of light-emitting devices in young adults complaining of a delayed sleep schedule. Journal of Biological Rhythms, 33(2), 192–202.
West, K. E., Jablonski, M. R., Warfield, B., Cecil, K. S., James, M., Ayers, M. A., … & Brainard, G. C. (2011). Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of Applied Physiology.
Zhao, J., Warman, G. R., & Cheeseman, J. F. (2019). The functional changes of the circadian system organization in aging. Ageing Research Reviews, 52, 64–71.
An, J., Su, Z., & Meng, S. (2024). Effect of aerobic training versus resistance training for improving cardiorespiratory fitness and body composition in middle-aged to older adults: A systematic review and meta-analysis of randomized controlled trials. Archives of Gerontology and Geriatrics, 126, 105530.
Balady, G. J., et al. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults. Circulation, 122(2), 191–225.
Hogwood, A. C., et al. (2025). Structural and Functional Adaptations to Exercise Training. Basic to Translational Science, 10(5), 564–567.
Jensen, M. T., et al. (2017). Cardiorespiratory fitness and death from cancer. BJSM, 51(18), 1364–1369.
Kaminsky, L. A., et al. (2019). Findings from the FRIEND registry. Progress in Cardiovascular Diseases, 62(1), 76–82.
Khalafi, M., et al. (2022). Concurrent vs aerobic/resistance training. Physiology & Behavior, 254, 113888.
Al Saadi, T., Assaf, Y., Farwati, M., Turkmani, K., Al-Mouakeh, A., Shebli, B., … & Madmani, M. E. (2021). Coenzyme Q10 for heart failure. Cochrane Database of Systematic Reviews, (2).
Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. (1994). The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New England Journal of Medicine, 330(15), 1029–1035.
Ambrosone, C. B., Zirpoli, G. R., Hutson, A. D., McCann, W. E., McCann, S. E., Barlow, W. E., … & Albain, K. S. (2020). Dietary supplement use during chemotherapy and survival outcomes of patients with breast cancer enrolled in a cooperative group clinical trial (SWOG S0221). Journal of Clinical Oncology, 38(8), 804–814.
Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2012). Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews, (3).
Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2015). Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Sao Paulo Medical Journal, 133(2), 164–165.
Fritz, H., Flower, G., Weeks, L., Cooley, K., Callachan, M., McGowan, J., … & Seely, D. (2014). Intravenous vitamin C and cancer: a systematic review. Integrative Cancer Therapies, 13(4), 280–300.
Gomez-Cabrera, M. C., Domenech, E., & Viña, J. (2008). Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radical Biology and Medicine, 44(2), 126–131.
Halliwell, B. (2007). Oxidative stress and cancer: have we moved forward?. Biochemical Journal, 401(1), 1–11.
Jin, D., Jin, S., Sheng, G., Cui, Z., Gao, P., & Li, G. (2025). Effects of Curcumin on Postmenopausal Women’s Health: A Systematic Review and Meta‐Analysis. Phytotherapy Research, 39(5), 2202–2216.
Khan, S. U., Khan, M. U., Riaz, H., Valavoor, S., Zhao, D., Vaughan, L., … & Michos, E. D. (2019). Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Annals of Internal Medicine, 171(3), 190–198.
Lichtenstein, A. H., Appel, L. J., Vadiveloo, M., Hu, F. B., Kris-Etherton, P. M., Rebholz, C. M., … & American Heart Association Councils. (2021). 2021 dietary guidance to improve cardiovascular health. Circulation, 144(23), e472–e487.
Liochev, S. I. (2015). Which is the most significant cause of aging? Antioxidants, 4(4), 793–810.
Mangione, C. M., Barry, M. J., Nicholson, W. K., Cabana, M., Chelmow, D., Coker, T. R., … & US Preventive Services Task Force. (2022). Vitamin, mineral, and multivitamin supplementation to prevent cardiovascular disease and cancer. JAMA, 327(23), 2326–2333.
Merry, T. L., & Ristow, M. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?. The Journal of Physiology, 594(18), 5135–5147.
Miller III, E. R., Pastor-Barriuso, R., Dalal, D., Riemersma, R. A., Appel, L. J., & Guallar, E. (2005). High-dosage vitamin E supplementation may increase all-cause mortality. Annals of Internal Medicine, 142(1), 37–46.
Mohseni, S., Tavakoli, A., Ghazipoor, H., Pouralimohamadi, N., Zare, R., Rampp, T., … & Pasalar, M. (2025). Curcumin for the clinical treatment of inflammatory bowel diseases. Frontiers in Nutrition, 12, 1494351.
Monti, D. A., Mitchell, E., Bazzan, A. J., Littman, S., Zabrecky, G., Yeo, C. J., … & Levine, M. (2012). Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One, 7(1), e29794.
Padayatty, S. J., Sun, H., Wang, Y., Riordan, H. D., Hewitt, S. M., Katz, A., … & Levine, M. (2004). Vitamin C pharmacokinetics: implications for oral and intravenous use. Annals of Internal Medicine, 140(7), 533–537.
Paulsen, G., Cumming, K. T., Holden, G., Hallén, J., Rønnestad, B. R., Sveen, O., … & Raastad, T. (2014). Vitamin C and E supplementation hampers cellular adaptation to endurance training. The Journal of Physiology, 592(8), 1887–1901.
Perlmutter, A., Bland, J. S., Chandra, A., Malani, S. S., Smith, R., Mendez, T. L., & Dwaraka, V. B. (2024). Polyphenol-rich supplement and immune age. Frontiers in Nutrition, 11, 1474597.
Sanft, T., Day, A., Ansbaugh, S., Armenian, S., Baker, K. S., Ballinger, T., … & Freedman-Cass, D. A. (2023). NCCN guidelines insights: Survivorship, version 1.2023. Journal of the National Comprehensive Cancer Network, 21(8), 792–803.
Sbodio, J. I., Snyder, S. H., & Paul, B. D. (2019). Redox mechanisms in neurodegeneration. Antioxidants & Redox Signaling, 30(11), 1450–1499.
Sies, H., & Jones, D. P. (2020). Reactive oxygen species as pleiotropic signaling agents. Nature Reviews Molecular Cell Biology, 21(7), 363–383.
Superti, F., & Russo, R. (2024). Alpha-Lipoic Acid: Biological mechanisms and health benefits. Antioxidants, 13(10), 1228.
Wyckelsma, V. L., Murgia, M., Kamandulis, S., Gastaldello, S., Brazaitis, M., Snieckus, A., … & Venckunas, T. (2025). Antioxidant supplementation blunts proteome response to sprint training. The Journal of Physiology.
Xu, Y., Zheng, H., Slabu, I., Liehn, E. A., & Rusu, M. (2025). Vitamin C in cardiovascular disease. Antioxidants, 14(5), 506.
Anker, S. D., Morley, J. E., & von Haehling, S. (2016). Welcome to the ICD‐10 code for sarcopenia. Journal of cachexia, sarcopenia and muscle, 7(5), 512-514.
Bailey, P., Holowacz, T., & Lassar, A. B. (2001). The origin of skeletal muscle stem cells in the embryo and the adult. Current opinion in cell biology, 13(6), 679-689.
Bao, J. F., She, Q. Y., Hu, P. P., Jia, N., & Li, A. (2022). Irisin, a fascinating field in our times. Trends in Endocrinology & Metabolism, 33(9), 601-613.
Beaudart, C., Alcazar, J., Aprahamian, I., Batsis, J. A., Yamada, Y., Prado, C. M., … & Global Leadership Initiative in Sarcopenia (GLIS) group. (2025). Health outcomes of sarcopenia: a consensus report by the outcome working group of the Global Leadership Initiative in Sarcopenia (GLIS). Aging clinical and experimental research, 37(1), 100.
Bhasin, S., Travison, T. G., Manini, T. M., Patel, S., Pencina, K. M., Fielding, R. A., … & Cawthon, P. M. (2020). Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. Journal of the American Geriatrics Society, 68(7), 1410-1418.
Caballero-García, A., Pascual-Fernández, J., Noriega-González, D. C., Bello, H. J., Pons-Biescas, A., Roche, E., & Córdova-Martínez, A. (2021). L-citrulline supplementation and exercise in the management of sarcopenia. Nutrients, 13(9), 3133.
Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., … & Zamboni, M. (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing, 39(4), 412-423.
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., … & Zamboni, M. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing, 48(1), 16-31.
Dodds, R. M., Syddall, H. E., Cooper, R., Benzeval, M., Deary, I. J., Dennison, E. M., … & Sayer, A. A. (2014). Grip strength across the life course: normative data from twelve British studies. PloS one, 9(12), e113637.
Fragala, M. S., Cadore, E. L., Dorgo, S., Izquierdo, M., Kraemer, W. J., Peterson, M. D., & Ryan, E. D. (2019). Resistance training for older adults: position statement from the national strength and conditioning association. The Journal of Strength & Conditioning Research, 33(8).
Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), S4-S9.
Goes‐Santos, B. R., Carson, B. P., da Fonseca, G. W. P., & von Haehling, S. (2024). Nutritional strategies for improving sarcopenia outcomes in older adults: A narrative review. Pharmacology research & perspectives, 12(5), e70019.
Grima-Terrén, M., Campanario, S., Ramírez-Pardo, I., Cisneros, A., Hong, X., Perdiguero, E., … & Munoz-Canoves, P. (2024). Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Molecular Aspects of Medicine, 100, 101319.
Gümüşsoy, M., Atmış, V., Yalçın, A., Bahşi, R., Yiğit, S., Arı, S., … & Silay, K. (2021). Malnutrition-sarcopenia syndrome and all-cause mortality in hospitalized older people. Clinical Nutrition, 40(11), 5475-5481.
Janssen, I., Heymsfield, S. B., Wang, Z., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of applied physiology.
Kadi, F., & Ponsot, E. (2010). The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scandinavian journal of medicine & science in sports, 20(1), 39-48.
Kim, H., Wrann, C. D., Jedrychowski, M., Vidoni, S., Kitase, Y., Nagano, K., … & Spiegelman, B. M. (2018). Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 175(7), 1756-1768.
Kuh, D., Bassey, J., Hardy, R., Aihie Sayer, A., Wadsworth, M., & Cooper, C. (2002). Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. American Journal of Epidemiology, 156(7), 627-633.
Liu, S., Cui, F., Ning, K., Wang, Z., Fu, P., Wang, D., & Xu, H. (2022). Role of irisin in physiology and pathology. Frontiers in Endocrinology, 13, 962968.
Mertz, K. H., Reitelseder, S., Bechshoeft, R., Bulow, J., Højfeldt, G., Jensen, M., … & Holm, L. (2021). The effect of daily protein supplementation, with or without resistance training for 1 year, on muscle size, strength, and function in healthy older adults: A randomized controlled trial. The American journal of clinical nutrition, 113(4), 790-800.
Mitchell, W. K., Williams, J., Atherton, P., Larvin, M., Lund, J., & Narici, M. (2012). Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in physiology, 3, 260.
Nabuco, H. C., Tomeleri, C. M., Sugihara Junior, P., Fernandes, R. R., Cavalcante, E. F., Antunes, M., … & Cyrino, E. S. (2018). Effects of whey protein supplementation pre-or post-resistance training on muscle mass, muscular strength, and functional capacity in pre-conditioned older women: a randomized clinical trial. Nutrients, 10(5), 563.
Petermann‐Rocha, F., Balntzi, V., Gray, S. R., Lara, J., Ho, F. K., Pell, J. P., & Celis‐Morales, C. (2022). Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta‐analysis. Journal of cachexia, sarcopenia and muscle, 13(1), 86-99.
Petrella, J. K., Kim, J. S., Mayhew, D. L., Cross, J. M., & Bamman, M. M. (2008). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. Journal of applied physiology.
Piasecki, M., Ireland, A., Jones, D. A., & McPhee, J. S. (2016). Age-dependent motor unit remodelling in human limb muscles. Biogerontology, 17(3), 485-496.
Reza, M. M., Subramaniyam, N., Sim, C. M., Ge, X., Sathiakumar, D., McFarlane, C., … & Kambadur, R. (2017). Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nature communications, 8(1), 1104.
Sayer, A. A., Syddall, H., Martin, H., Patel, H., Baylis, D., & Cooper, C. (2008). The developmental origins of sarcopenia. The Journal of nutrition, health and aging, 12(7), 427-432.
Shafiee, G., Keshtkar, A., Soltani, A., Ahadi, Z., Larijani, B., & Heshmat, R. (2017). Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. Journal of Diabetes & Metabolic Disorders, 16(1), 21.
Smeuninx, B., Greig, C. A., & Breen, L. (2020). Amount, source and pattern of dietary protein intake across the adult lifespan: a cross-sectional study. Frontiers in Nutrition, 7, 25.
Song, R., Zhao, X., Zhang, D. Q., Wang, R., & Feng, Y. (2021). Lower levels of irisin in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Research and Clinical Practice, 175, 108788.
Snijders, T., Verdijk, L. B., & van Loon, L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing research reviews, 8(4), 328-338.
Tieland, M., Trouwborst, I., & Clark, B. C. (2018). Skeletal muscle performance and ageing. Journal of cachexia, sarcopenia and muscle, 9(1), 3-19.
Verdijk, L. B., Koopman, R., Schaart, G., Meijer, K., Savelberg, H. H., & van Loon, L. J. (2007). Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. American Journal of Physiology-Endocrinology and Metabolism.
Verdijk, L. B., Snijders, T., Beelen, M., Savelberg, H. H., Meijer, K., Kuipers, H., & Van Loon, L. J. (2010). Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. Journal of the American Geriatrics Society, 58(11), 2069-2075.
Visser, M., Deeg, D. J., & Lips, P. (2003). Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. The Journal of Clinical Endocrinology & Metabolism, 88(12), 5766-5772.
Yu, X., Sun, S., Zhang, S., Hao, Q., Zhu, B., Teng, Y., … & Teng, Z. (2022). A pooled analysis of the association between sarcopenia and osteoporosis. Medicine, 101(46), e31692.
Yuan, S., & Larsson, S. C. (2023). Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism, 144, 155533.
Zhang, L., Peng, Y., Kong, Y., Zhang, X., Li, Z., & Jia, H. (2025). Circulating irisin levels in patients with sarcopenia: A systematic review and meta-analysis. European geriatric medicine, 16(1), 5-13.